Exclusive Content & Downloads from ASQ

Bayes Statistical Analyses for Particle Sieving Studies

Summary: Particle size is commonly used to determine quality and predict performance of particle systems. We consider particle size distributions inferred from a material sample using a fixed number of sieves with progressively smaller size openings, where the weight of the particles in each size interval is measured. In this article, we propose Bayes analyses for data from particle sieving studies based on parsimoniously parameterized multivariate normal approximate models for vectors of log weight fraction ratios. Additionally, we observe that the basic approach extends directly to modeling mixture contexts, which provides model flexibility and is a very natural extension when physical mixtures of materials with fundamentally different particle sizes are encountered. We also consider hierarchical modeling, where a single process produces lots of particles and the data available are (replicated) weight fraction vectors from different lots. Supplementary materials for this article are available online.

Anyone with a subscription, including Site and Enterprise members, can access this article.

Other Ways to Access content:

Join ASQ

Join ASQ as a Full member. Enjoy all the ASQ member benefits including access to many online articles.

  • Topics: Quality Management
  • Keywords: Bayesian methods, Hierarchical systems, Physical modeling, Bulk material, Mixture variables, Pharmaceutical industry, Compositional data, Particle size distribution, Weight fractions
  • Author: Leyva, Norma; Page, Garritt L.; Vardeman, Stephen B.; Wendelberger, Joanne R.;
  • Journal: Technometrics