Exclusive Content & Downloads from ASQ

Robust Parameter Design with Computer Experiments Using Orthonormal Polynomials

Summary: [This abstract is based on the authors' abstract.] Robust parameter design with computer experiments is becoming increasingly important for product design. Existing methodologies for this problem are mostly for finding optimal control factor settings. However, in some cases, the objective of the experimenter may be to understand how the noise and control factors contribute to variation in the response. The functional analysis of variance (ANOVA) and variance decompositions of the response, in addition to the mean and variance models, help achieve this objective. Estimation of these quantities is not easy and few methods are able to quantity the estimation uncertainty. In this article, we show that the use of an orthonormal polynomial model of the simulator leads to simple formulas for functional ANOVA and variance decompositions, and the mean and variance models. We show that estimation uncertainty can be taken into account in a simple way by first fitting a Gaussian process model to experiment data and then approximating it with the orthonormal polynomial model. This leads to a joint normal distribution for the polynomial coefficients that quantifies estimation uncertainty. Supplementary materials for this article are available online.

Anyone with a subscription, including Site and Enterprise members, can access this article.

Other Ways to Access content:

Join ASQ

Join ASQ as a Full member. Enjoy all the ASQ member benefits including access to many online articles.

  • Topics: Statistics
  • Keywords: Parameter design, Experiments, Computers, Control factors, Simulations, Data
  • Author: Tan, Matthias Hwai Yong;
  • Journal: Technometrics