Exclusive Content & Downloads from ASQ

Bayesian Detection of Changepoints in Finite-State Markov Chains for Multiple Sequences

Summary: [This article is based on the authors' abstract.] We consider the analysis of sets of categorical sequences consisting of piecewise homogenous Markov segments. The sequences are assumed to be governed by a common underlying process with segments occurring in the same order for each sequence. Segments are defined by a set of unobserved changepoints where the positions and number of changepoints can vary from sequence to sequence. We propose a Bayesian framework for analyzing such data, placing priors on the locations of the changepoints and on the transition matrices and using Markov chain Monte Carlo (MCMC) techniques to obtain posterior samples given the data. Experimental results using simulated data illustrate how the methodology can be used for inference of posterior distributions for parameters and changepoints, as well as the ability to handle considerable variability in the locations of the changepoints across different sequences. We also investigate the application of the approach to sequential data from an application involving monsoonal rainfall patterns. Supplementary materials for this article are available online.

Anyone with a subscription, including Site and Enterprise members, can access this article.

Other Ways to Access content:

Join ASQ

Join ASQ as a Full member. Enjoy all the ASQ member benefits including access to many online articles.

  • Topics: Statistics
  • Keywords: Change, Bayesian methods, Parameters, Markov chains, Multiple comparisons, Validation
  • Author: Arnesen, Petter; Holsclaw, Tracy; Smyth, Padhraic
  • Journal: Technometrics