Exclusive Content & Downloads from ASQ

Online Updating of Statistical Inference in the Big Data Setting

Summary: [This abstract is based on the authors' abstract.] We present statistical methods for big data arising from online analytical processing, where large amounts of data arrive in streams and require fast analysis without storage/access to the historical data. In particular, we develop iterative estimating algorithms and statistical inferences for linear models and estimating equations that update as new data arrive. These algorithms are computationally efficient, minimally storage-intensive, and allow for possible rank deficiencies in the subset design matrices due to rare-event covariates. Within the linear model setting, the proposed online-updating framework leads to predictive residual tests that can be used to assess the goodness of fit of the hypothesized model. We also propose a new online-updating estimator under the estimating equation setting. Theoretical properties of the goodness-of-fit tests and proposed estimators are examined in detail. In simulation studies and real data applications, our estimator compares favorably with competing approaches under the estimating equation setting. Supplementary materials for this article are available online.

Anyone with a subscription, including Site and Enterprise members, can access this article.

Other Ways to Access content:

Join ASQ

Join ASQ as a Full member. Enjoy all the ASQ member benefits including access to many online articles.

  • Topics: Data Quality, Software and Technology (for statistics, measurement, analysis), Statistics
  • Keywords: Data analysis, Algorithm, Linear models, Goodness of fit, Estimation, Efficiency
  • Author: Schifano, Elizabeth D.; Wu, Jing; Wang, Chun; Yan, Jun; Chen, Ming-Hui;
  • Journal: Technometrics