Exclusive Content & Downloads from ASQ

Detecting Deviating Data Cells

Summary: A multivariate dataset consists of n cases in d dimensions, and is often stored in an n by d data matrix. It is well-known that real data may contain outliers. Depending on the situation, outliers may be (a) undesirable errors, which can adversely affect the data analysis, or (b) valuable nuggets of unexpected information. In statistics and data analysis, the word outlier usually refers to a row of the data matrix, and the methods to detect such outliers only work when at least half the rows are clean. But often many rows have a few contaminated cell values, which may not be visible by looking at each variable (column) separately. We propose the first method to detect deviating data cells in a multivariate sample which takes the correlations between the variables into account. It has no restriction on the number of clean rows, and can deal with high dimensions. Other advantages are that it provides predicted values of the outlying cells, while imputing missing values at the same time. We illustrate the method on several real datasets, where it uncovers more structure than found by purely columnwise methods or purely rowwise methods. The proposed method can help to diagnose why a certain row is outlying, for example, in process control. It also serves as an initial step for estimating multivariate location and scatter matrices.

Anyone with a subscription, including Site and Enterprise members, can access this article.

Other Ways to Access content:

  • Topics: Statistics
  • Keywords: Cellwise outlier, Missing values, Multivariate data, Robust estimation, Rowwise outlier
  • Author: Rousseeuw, Peter J.; Van Den Bossche, Wannes
  • Journal: Technometrics